Mean-Field Stochastic Linear Quadratic Optimal Control Problems: Closed-Loop Solvability
نویسندگان
چکیده
An optimal control problem is studied for a linear mean-field stochastic differential equation with a quadratic cost functional. The coefficients and the weighting matrices in the cost functional are all assumed to be deterministic. Closed-loop strategies are introduced, which require to be independent of initial states; and such a nature makes it very useful and convenient in applications. In this paper, the existence of an optimal closed-loop strategy for the system (also called the closed-loop solvability of the problem) is characterized by the existence of a regular solution to the coupled two (generalized) Riccati equations, together with some constraints on the adapted solution to a linear backward stochastic differential equation and a linear terminal value problem of an ordinary differential equation.
منابع مشابه
Mean-Field Stochastic Linear Quadratic Optimal Control Problems: Open-Loop Solvabilities
This paper is concerned with a mean-field linear quadratic (LQ, for short) optimal control problem with deterministic coefficients. It is shown that convexity of the cost functional is necessary for the finiteness of the mean-field LQ problem, whereas uniform convexity of the cost functional is sufficient for the open-loop solvability of the problem. By considering a family of uniformly convex ...
متن کاملLinear-Quadratic Control of Discrete-Time Stochastic Systems with Indefinite Weight Matrices and Mean-Field Terms
In this paper, the linear-quadratic optimal control problem is considered for discretetime stochastic systems with indefinite weight matrices in the cost function and mean-field terms in both the cost function and system dynamics. A set of generalized difference Riccati equations (GDREs) is introduced in terms of algebraic equality constraints and matrix pseudo-inverse. It is shown that the sol...
متن کاملTime-Inconsistent Discrete-Time Stochastic Linear-Quadratic Optimal Control: Time-consistent Solutions
In this paper, the time-consistent solutions of a timeinconsistent discrete-time stochastic linear-quadratic optimal control are investigated. Different from the existing literature, the definiteness constraint is not posed on the state and the control weight matrices of the cost functional. Necessary and sufficient conditions are, respectively, obtained to the existence of the open-loop time-c...
متن کاملQuadratic Hedging and Mean-Variance Portfolio Selection with Random Parameters in an Incomplete Market
This paper concerns the problems of quadratic hedging and pricing, and mean-variance portfolio selection in an incomplete market setting with continuous trading, multiple assets, and Brownian information. In particular, we assume throughout that the parameters describing the market model may be random processes. We approach these problems from the perspective of linear-quadratic (LQ) optimal co...
متن کاملSolvability of indefinite stochastic Riccati equations and linear quadratic optimal control problems
A new approach to study the indefinite stochastic linear quadratic (LQ) optimal control problems, which we called the “equivalent cost functional method”, is introduced by Yu [15] in the setup of Hamiltonian system. On the other hand, another important issue along this research direction, is the possible state feedback representation of optimal control and the solvability of associated indefini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016